CV52
6K AI Vision Processor

Key Features

High-Efficiency Video Encoding
- H.265 and H.264 video compression
- Flexible multi-streaming capability
- 4K@60 video performance
- Multiple CBR and VBR bit rate control modes
- Smart H.264 and H.265 encoder algorithms

Computer Vision Engine CVflow®
- CNN / DNN-based processing: detection, classification, and more
- Accelerators for conventional CV operations
- CNN toolkit for easy porting of neural networks implemented in Caffe, TensorFlow, PyTorch, or ONNX frameworks

Advanced Image Processing
- Multi-exposure line-interleaved HDR
- Hardware de-warping engine
- Electronic image stabilization (EIS)
- Multiple camera support
- LED flicker mitigation
- 3D motion-compensated temporal filtering (MCTF)
- Superior low-light processing
- RGB / RCCB / RCCC / RGB-IR / monochrome sensor support

Target Applications
- Sports cameras
- Robotic cameras
- Drones
- VR cameras
- Multi-channel drive recorders / data loggers
- Multi-camera aftermarket ADAS systems

Overview

Ambarella’s CV52 provides 6K image processing, video encoding / decoding, and CVflow® computer vision processing in a single, low-power design. Fabricated in advanced 5 nm process technology, it achieves an industry-leading combination of low power and high performance in both human vision and computer vision applications. The CV52's CVflow architecture provides the deep neural network (DNN) processing required for the next generation of intelligent cameras.

CV52’s advanced image signal processor (ISP) provides outstanding imaging in low-light conditions, while high dynamic range (HDR) processing extracts maximum image detail in high-contrast scenes, further enhancing the computer vision capabilities of the chip. CV52 includes efficient encoding in both AVC and HEVC video formats, delivering high-resolution video recording and streaming with very low bitrates. The CV52’s CVflow architecture provides computer vision processing while enabling image recognition over long distances, with high accuracy.

The exceptionally low power consumption of the CV52 SoC makes it an ideal solution for the next generation of high-resolution and high frame-rate action / sports cameras, robotic cameras, VR cameras, and consumer / industrial drones. In the video telematics space, CV52 provides image processing and both AVC and HEVC recording for video feeds from multiple cameras, employing CVflow ADAS algorithms to provide lane departure warning, forward collision warning, driver monitoring, and more. To help customers easily port their own neural networks onto the CV52 SoC, Ambarella’s software development kit offers a complete set of tools for software and AI implementation.

CV52 Block Diagram
General Specifications

Processor Cores
- Dual-core Arm® Cortex®-A76 up to 1.6 GHz
- 64 KB / 64 KB L1 cache, 256 KB L2 cache, and 1024 KB L3 cache
- NEON™ SIMD and FPU acceleration
- AES / SHA-2 / ED25519 crypto acceleration

Computer Vision Processor
- CVflow processor with parallel architecture to boost performance of the low-level portion of perception algorithms

Evaluation Kit
- CV52 main board with connectors for sensor / lens board and peripherals
- Sensor board: Sony, ON Semi, Omnivision, and others
- Datasheet, BOM, schematics, and layout
- SDK and reference application with C source code

Software Development Kit
- Royalty-free libraries for ISP, dewarp, and video recording
- Image tuning and manufacturing calibration tools
- Detailed documentation, including a programmer’s guide and more
- CNN / DNN model preparation, porting, and profiling tools

Memory Interfaces
- LPDDR4x up to 4 Gbits/s / LPDDR5(x) up to 5 Gbits/s, 32-bit data bus, up to 16 GB capacity for LPDDR5(x) and 8 GB for LPDDR4x
- Three SD controllers
- Boot from SPI NAND / SPI NOR / USB / eMMC

Peripheral Interfaces
- 10 / 100 / 1000 Ethernet with RMII / RGMII
- 4-lane PCIe
- 1x USB 3.2 host / device and 1x USB 2.0 device only with PHY
- 2x I²S input and output interfaces, 1x DMIC
- 2x CAN FD interface
- Multiplexed 5x UART and 6 I/F of SPI / I²C
- Multiple GPIO ports, PWM, IR, and ADC
- Watchdog timer, general purpose timers, and JTAG

Physical
- 5 nm low-power CMOS technology
- 13 mm x 13 mm FC TFBGA with 0.5 mm ball pitch
- Operating temperature -20°C to +85°C (additional operational temperature options available)

Tools for Development
- CNN toolkit to ease the porting of CNNs trained using frameworks such as Caffe, PyTorch, TensorFlow, or ONNX
- Compiler, debugger, and profiler for both Arm and microcode development

Video Input
- 2x MIPI DC-PHY
 - Each DC-PHY supports C-PHY mode (1–3 lanes) or D-PHY mode (1–4 lanes)
- 2x MIPI D-PHY (1–4 lanes each)
- 2x SLVS (1–4 lanes each)
- Up to 14 cameras using MIPI virtual channels

Video Output
- HDMI® 2.0 including PHY with CEC support
- PAL / NTSC composite SD video
- 2x MIPI DSI / CSI-2

CMOS Sensor / Image Processing
- Processing up to 6KP30 / 4KP90 (720 MPixel/s)
- Lens shading, fixed-pattern noise correction
- Multi-exposure HDR (line-interleavened sensors)
- 3D motion-compensated temporal filtering (MCTF)

Security Features
- Enhanced secure boot with TrustZone® and secure memory, true random number generator (TRNG), one-time programmable memory (OTP), Arm trusted base system architecture (TBSA) compliance, DRAM scrambling, and virtualization

Video Encoding / Decoding
- H.265 (HEVC) MP L6.1, H.264 (AVC) MP / HP L6.1, and MPEU
- 6KP30 / 4KP90 maximum encoding / decoding performance
- Flexible GOP configuration with I, P, and B frames
- Multiple CBR and VBR rate control modules

Video Encoding / Decoding
- 10 / 100 / 1000 Ethernet with RMII / RGMII
- 4-lane PCIe
- 1x USB 3.2 host / device and 1x USB 2.0 device only with PHY
- 2x I²S input and output interfaces, 1x DMIC
- 2x CAN FD interface
- Multiplexed 5x UART and 6 I/F of SPI / I²C
- Multiple GPIO ports, PWM, IR, and ADC
- Watchdog timer, general purpose timers, and JTAG

Physical
- 5 nm low-power CMOS technology
- 13 mm x 13 mm FC TFBGA with 0.5 mm ball pitch
- Operating temperature -20°C to +85°C (additional operational temperature options available)

CV52 Camera Development Platform

The CV52 camera development platform contains the necessary tools, software, hardware, and documentation to develop a camera utilizing the powerful CVflow processor while supporting the development of customized features.

Evaluation Kit
- CV52 main board with connectors for sensor / lens board and peripherals
- Sensor board: Sony, ON Semi, Omnivision, and others
- Datasheet, BOM, schematics, and layout
- SDK and reference application with C source code

Software Development Kit
- Royalty-free libraries for ISP, dewarp, and video recording
- Image tuning and manufacturing calibration tools
- Detailed documentation, including a programmer’s guide and more
- CNN / DNN model preparation, porting, and profiling tools

www.ambarella.com/contact-us/

Copyright Ambarella International LP. All rights reserved. Ambarella and the Ambarella logo are trademarks of Ambarella International LP. All other brands, product names, and company names are trademarks of their respective owners. The information in this document is believed to be reliable, but may project preliminary functionality not yet available. Ambarella makes no guarantee or warranty concerning the accuracy and availability of said information and shall not be responsible for any loss or damage whatever nature resulting from the use of, or reliance upon it. Ambarella does not guarantee that the use of any information contained herein will not infringe upon patent, trademark, copyright, or other rights of third parties. Ambarella reserves the right to make changes in the product and / or its specifications presented in this publication at any time without notice.